Could you go through the derivation of the Doppler effect for a source moving towards an observer?

(need a diagram showing situation). You know that the frequency emitted by the source is given by the velocity of the emitted source divided by the wavelength (f_s = v / wavelength). It is also known that frequency is equal to 1/T (where T is the period). Consider the source moving towards the observer at speed u, the observer will observe a wavelength shorter than the sources original wavelength. This is made much clearer by looking at the diagram. In a period of time T, the waves emitted from the source will travel a distance of (vT - uT) and hence the frequency observed will be f'= v/((v-u)T). We know 1/T = the frequency emitted by the source so the equation can be rewritten as f'= (v/(v-u))f_s. This is the formula that gives you the frequency detected by a stationary observer as a source is moving towards it.

MP
Answered by Martina P. Physics tutor

1670 Views

See similar Physics IB tutors

Related Physics IB answers

All answers ▸

An electron is trapped within a square well potential of width 10 nm. What would be the wavelength of the photon emitted when an electron moves from the first energy level to the ground level.


How De Broglie's wavelength found/derived?


How can I derive the energy of an electron using the electron in a box model?


Why is centripetal acceleration directed inwards to the centre of the circle during centripetal motion? If I’m in a car while it’s cornering, I seem to be pushed outwards away from the centre, not inwards.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning