How to use the integrating factor?

Say you have a differential equation of the form:
dy/dx + Py = Q , where P and Q are functions of x.
Remember that even if your equation doesn't initially look like this, you may be able to rearrange it into this format!
The integrating factor is e^( ∫P dx).
If we multiply the whole equation by this integrating factor (not forgetting the right hand side!) then it will be in the form:
e^( ∫P dx) dy/dx + Pe^( ∫P dx) y = Qe^( ∫P dx)
This is useful to us because now the left hand side looks like something we might obtain from the product rule ( d/dx(uv)=u'v+v'u), with u=y and v=e^( ∫P dx).
So now we can write:
d/dx (ye^( ∫P dx)) = Qe^( ∫P dx)
Integrating both sides gives:
ye^( ∫P dx) = ∫ (Qe^( ∫P dx)) dx
This is the method, but it may be easier to understand with an example.
y = x dy/dx - 3x
This doesn't look like the form we want, but note that after a little rearranging, it can be expressed as:
dy/dx + y/x = 3
So here we have P=1/x, Q=3.
Our integrating factor is e^( ∫1/x dx) = e^(ln x) = x
Now we want to multiply the whole equation by this integrating factor, giving us:
x dy/dx + y = 3x
Noting that this looks like the product rule with u=y, v=x, we write:
d/dx (xy) = 3x
Integrating both sides gives
xy = ∫3x dx
xy = 1.5x^2 +c
Usually, you'll want the answer to be in the form y= something (although not always), so we divide through by x to give our final answer of:
y = 1.5x +c/x

EN
Answered by Ella N. Further Mathematics tutor

11267 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

For what values of x is Cosh^2(x) - Sinh(x) = 5 Give your answer in the form of a logarithm


How do you find the cube root of z = 1 + i?


solve the 1st order differential equation 2y+(x*dy/dx)=x^3


When using the method of partial fractions how do you choose what type of numerator to use and how do you know how many partial fractions there are?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences