using an integrating factor, find the general solution of the differential equation dy/dx +y(tanx)=tan^3(x)sec(x)

This is a first order differential equation, but initially it is not solvable as both the X&Y's can't be separated from eachother directly. An integrating factor is a specific value that when multiplied can render the equation integratable on the left side. Firstly dy/dx +yp(x)=q(x) is the traditional form of this type of differential equation, and how we find the integrating factor is by calculating IF=eint(px)dx (int=integrate) .So by integating tan(x) we get ln|sec(x)|, thus eln|sec(x)|​=sec(x). Apply this to the intial equation by multiplying each side by sec(x), which equals  sec(x)dy/dx+ytan(x)sec(x)=tan3(x)sec2(x), d/dx[ysec(x)]=tan3(x)sec2(x), ysec(x)=int(tan3(x)sec2(x)dx) Integrating by substitution: let y=tan(x), dy/dx=sec2(x), thus ysec(x)=int(y3dy)=y4/4+c=tan4(x)/4+c Therefore the general solution to the differential equation is: y=cos(x)tan4(x)/4+c(cos(x))=sin(x)tan3(x)/4+c(cos(x)). Where c(cos(x)) is a constant

TR
Answered by Taylor R. Further Mathematics tutor

5300 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Show that the sum from 1 to n of 1/(2n+1)(2n-1) is equal to n/(2n+1) by Induction


How do I do a proof by induction?


Let f(x)=x^x for x>0, then find f'(x) for all x>0.


Find the integral of f(x)= x^3 + 2x^2 + 1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning