using an integrating factor, find the general solution of the differential equation dy/dx +y(tanx)=tan^3(x)sec(x)

This is a first order differential equation, but initially it is not solvable as both the X&Y's can't be separated from eachother directly. An integrating factor is a specific value that when multiplied can render the equation integratable on the left side. Firstly dy/dx +yp(x)=q(x) is the traditional form of this type of differential equation, and how we find the integrating factor is by calculating IF=eint(px)dx (int=integrate) .So by integating tan(x) we get ln|sec(x)|, thus eln|sec(x)|​=sec(x). Apply this to the intial equation by multiplying each side by sec(x), which equals  sec(x)dy/dx+ytan(x)sec(x)=tan3(x)sec2(x), d/dx[ysec(x)]=tan3(x)sec2(x), ysec(x)=int(tan3(x)sec2(x)dx) Integrating by substitution: let y=tan(x), dy/dx=sec2(x), thus ysec(x)=int(y3dy)=y4/4+c=tan4(x)/4+c Therefore the general solution to the differential equation is: y=cos(x)tan4(x)/4+c(cos(x))=sin(x)tan3(x)/4+c(cos(x)). Where c(cos(x)) is a constant

TR
Answered by Taylor R. Further Mathematics tutor

4855 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Express cos5x in terms of increasing powers of cosx


The set of midpoints of the parallel chords of an ellipse with gradient, constant 'm', lie on a straight line: find its equation; equation of ellipse: x^2 + 4y^2 = 4


Find the eigenvalues and eigenvectors of the following 3x3 matrix (reading left to right, top to bottom): (1 0 2 3 1 1 2 0 1)


Find the four roots of the equation z^4 = + 8(sqrt(3) + i), in the form z = r*e^(i*theta). Draw the roots on an argand diagram.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences