A light wave with wavelength 590nm shines upon a metal and causes it to emit an electron with a speed of 5x10^5 m/s. What is the work function of the metal?

The first step for this question is to find out how much energy is absorbed by the electron above its work function. This is found with the kinetic energy equation: K.E.=1/2mv^2 The mass of an electron is 9.1x10^-31. Using this in the above equation finds the kinetic energy to be:          K.E=0.59.1x10^-31(5x10^5)^2= 1.14x10^-19 J The kinetic energy is the energy above the work function. The energy provided from the photon of light is calculated with: E=(h*c)/L where E is the energy, h is the planck constant, c is the speed of light, and L is the wavelength.Inputting the correct values into the above equation gives: E=6.63 x 10^-34 x 3.0 x 10^8 / 5.9 x 10^-7= 3.37x10-19 J Finally, the work function can be found by subtracting the kinetic energy from the energy provided by the photon to give: W.F.= (3.37-1.14)x10^-19= 2.23x10^-19 J

Answered by Bevan J. Physics tutor

1918 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A bullet is fired horizontally from a gun at a height of 1.5m at 280m/s. Calculate the time taken for it to hit the ground. A second bullet is fired from an adjacent gun at 370m/s. Calculate the distance it travel before the first bullet hits the ground.


An electron and a proton are in any electric field E=5x10^2 V/m. What is their speed 1.0 cm after being released?


What are the postulates of special relativity?


An alpha particle is accelerated with 5MeV of kinetic energy towards the nucleus of a gold atom with atomic number 79. What is the distance of closest approach that is reached by the alpha particle?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy