What is electromotive force and how is it different to potential difference?

The electromotive force or emf of a cell in a circuit is, for a start, not a force at all: it has the unit of volts. A good definition is ‘the power supplied by the cell per unit current through the cell’ or, equivalently, ‘the energy supplied by the cell per unit charge through the cell’ (IB examiners love to ask for this by the way). When the internal resistance of a cell is zero (or negligible), the emf is exactly the same as the potential difference (or voltage) between the terminals of the cell. But this changes when the internal resistance is significant – this is the resistance inside the actual cell which will ‘use up’ some of the emf before the current even leaves the cell. Since V = IR, you can find the potential difference across this internal resistance by multiplying the resistance by the current through it. Taking away this value from the emf will give you the remaining potential difference between terminals of the cell.

TB
Answered by Tom B. Physics tutor

10227 Views

See similar Physics IB tutors

Related Physics IB answers

All answers ▸

A ball in a room is thrown with a speed v = 15 m/s at an angle 45 degrees above the horizontal. If the ceiling is 4 m high, will the ball hit the ceiling? If so, what is the minimum angle at which the ball will not hit the ceiling? Neglect air resistance.


A ball of mass m with initial velocity u rebounds from a wall, with final velocity v. Using Newton's laws of motion explain forces acting in the system.


How can an object in circular motion be accelerating when it's at the same speed?


When do you use each of the SUVAT equations? I am slightly confused about projectile motion.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences