Show that a pendulum undergoes simple harmonic motion (SHM). State your assumptions. The pendulum is made up of a light inextensible string, attached to a ceiling at one end and with a particle of mass m attached to the other end.

Begin with a diagram of the system, and definition of directions. Vertically up and clockwise rotations are positive. It must be recalled that in SHM force is proportional to displacement from equqilibrium. The key assumptions to make are: 

  1. the string is taught throughout the motion of the pendulum, 

  2. the string doesn't break thtroughout the motion of the pendulum,

  3. the initial angle of displacement from vertical is small, 

  4. there is no drag.

Take the angular displacement from veritcal to be x, and look at the forces on the particle. Assumptions 1) and 2) imply that there is no motion parrallel to the string, and hence the tension in the string must be equal magnitude to the weight of the mass parallel to the string. Hence the resultant force must act perpendicular to the direction of the string. Using trigonometry, this force (F) is: -mgsin(x). where g is the acceleration due to gravity. Now, in the small angle limit sin(x) ~ x so F=-mgsin(x) becomes F~-mgx. Since x is displacement from equilibrium, the system undergoes SHM.

LK
Answered by Luke K. Physics tutor

12382 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

I have an infinite number of glass blocks stacked side by side. The first block has refractive index n1, the second n2 and so on, such that n1<n2...<n(infinity). I shine a light on the stack, what angle does the ray make to the normal on the last block?


How many joules of heat energy are required to raise the temperature of 10kg of water from 22⁰C to 27⁰C? (The Specific Heat Capacity of water is 4200 Jkg^-1⁰C^-1)


What is electromotive force (emf) and how can the emf of a battery be measured?


What is an inertial frame of reference?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning