Show that a pendulum undergoes simple harmonic motion (SHM). State your assumptions. The pendulum is made up of a light inextensible string, attached to a ceiling at one end and with a particle of mass m attached to the other end.

Begin with a diagram of the system, and definition of directions. Vertically up and clockwise rotations are positive. It must be recalled that in SHM force is proportional to displacement from equqilibrium. The key assumptions to make are: 

  1. the string is taught throughout the motion of the pendulum, 

  2. the string doesn't break thtroughout the motion of the pendulum,

  3. the initial angle of displacement from vertical is small, 

  4. there is no drag.

Take the angular displacement from veritcal to be x, and look at the forces on the particle. Assumptions 1) and 2) imply that there is no motion parrallel to the string, and hence the tension in the string must be equal magnitude to the weight of the mass parallel to the string. Hence the resultant force must act perpendicular to the direction of the string. Using trigonometry, this force (F) is: -mgsin(x). where g is the acceleration due to gravity. Now, in the small angle limit sin(x) ~ x so F=-mgsin(x) becomes F~-mgx. Since x is displacement from equilibrium, the system undergoes SHM.

LK
Answered by Luke K. Physics tutor

11703 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How can an object be accelerating when it's velocity is constant, and how does centripetal acceleration work.


What is the maximum length a bungee rope with a spring constant of 100 Nm−1 can be for an 80kg man to be able to jump from 100m above a river without touching the water?


A ball with radius 10cm is filled with an ideal gas at pressure 2*(10)^5Pa and temperature 300K. The volume of the gas is changed at constant pressure so that the radius of the ball is reduced with 1cm. Find the amount of gas and the new temperature


How do I find the half-life of radioactive isotope?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences