How do you combine resistors is series and parallel?

In a series circuit each resistor will have the same current passing through it.  If we assume that the wires connecting the resistors have no resistance, then the total potential difference, V, is given by Kirchhoff’s Voltage Law;

V=V1+V2+V3+…

Using Ohm’s Law,

V=IR,

we get

IR=IR1+IR2+IR3+…

as the current is the same in each resistor we can cancel them out to get;

R=R1+R2+R3+…

Basically if you have 2 or more resistors in series the total resistance is simply the sum of each resistance.

Combining resistances in parallel is a bit more complicated; in a parallel circuit each resistor will have the same potential difference, but the current flowing through them will not necessarily be the same.  If we start with the conservation of charge we get;

I=I1+I2+I3+…

using Ohm’s Law again gives us

V/R=V/R1+V/R2+V/R3+…

and as V is the same for all the resistors we get

1/R=1/R1+1/R2+1/R3+…

If you have 2 or more resistors in parallel the reciprocal of the resistance (1 over the resistance) is the sum of the reciprocals of each resistance.

MQ
Answered by Matt Q. Physics tutor

3808 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

An object with weight w is suspended from two strings at angles θ1 and θ2 to the vertical and with tensions T1 and T2. How would you resolve the vertical and horizontal forces?


Why does a body engaged in uniform circular motion do no work?


A man weighing 600N steps on a scale that contains a spring. The spring is compressed 1cm under their weight. Find the force constant of the spring and total work done on its compression.


A pendulum of mass m is released from height h with a speed v at the bottom of its swing. a) What is the gravitational potential energy at height h and the kinetic energy at the bottom of its swing? b) Use conservation of energy to define the speed v.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences