How do you combine resistors is series and parallel?

In a series circuit each resistor will have the same current passing through it.  If we assume that the wires connecting the resistors have no resistance, then the total potential difference, V, is given by Kirchhoff’s Voltage Law;

V=V1+V2+V3+…

Using Ohm’s Law,

V=IR,

we get

IR=IR1+IR2+IR3+…

as the current is the same in each resistor we can cancel them out to get;

R=R1+R2+R3+…

Basically if you have 2 or more resistors in series the total resistance is simply the sum of each resistance.

Combining resistances in parallel is a bit more complicated; in a parallel circuit each resistor will have the same potential difference, but the current flowing through them will not necessarily be the same.  If we start with the conservation of charge we get;

I=I1+I2+I3+…

using Ohm’s Law again gives us

V/R=V/R1+V/R2+V/R3+…

and as V is the same for all the resistors we get

1/R=1/R1+1/R2+1/R3+…

If you have 2 or more resistors in parallel the reciprocal of the resistance (1 over the resistance) is the sum of the reciprocals of each resistance.

MQ
Answered by Matt Q. Physics tutor

3981 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

An electron is traveling at a velocity of 500m/s perpendicular to a uniform magnetic field. A force of magnitude 4.32 x10^(-16) N is acting on the electron, what is the magnetic flux density of the field?


Calculate the flight time of a ball moving in parabolic motion, with initial velocity 5.0m/s at angle 30 degrees from the horizontal travelling for 23 metres.


A ball of mass 0.25 kg is travelling with a velocity of 1.2 m/s when it collides with an identical, stationary ball. After the collision, the two balls move together with the same velocity. How fast are they moving?


What determines the acoustic impedance of a material and why is it useful in understanding ultrasound imaging?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning