Integrate f(x) = 1/(1-x^2)

1/(1-x2) can be split into the partial fractions A/(1+x) + B/(1-x), where A and B are real constants, which when evaluated by multiplying the equation 1/(1-x2) = A/(1+x) + B/(1-x) through by (1-x2) = (1+x)(1-x) and substituting x =1, and x = -1; we find A = B = 0.5 hence 1/(1-x2) = 1/2(1-x) + 1/2(1+x) which can easily be integrated to 0.5( -log(1-x) + log(1+x)) + c or in the more accepted form 0.5(log(1+x) - log(1-x)) + c. (Where c is a real constant). 

ML
Answered by Mitchell L. Further Mathematics tutor

2734 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Solve the equation 3sinh(2x) = 13 - 3e^(2x), answering in the form 0.5ln(k). where k is an integer


Using z=cos(θ)+isin(θ), find expressions for z^n-1/z^n and z^n+1/z^n


find the sum of r from 0 to n of : 1/((r+1)(r+2)(r+3))


Solve for z in the equation sin(z) = 2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning