Integrate f(x) = 1/(1-x^2)

1/(1-x2) can be split into the partial fractions A/(1+x) + B/(1-x), where A and B are real constants, which when evaluated by multiplying the equation 1/(1-x2) = A/(1+x) + B/(1-x) through by (1-x2) = (1+x)(1-x) and substituting x =1, and x = -1; we find A = B = 0.5 hence 1/(1-x2) = 1/2(1-x) + 1/2(1+x) which can easily be integrated to 0.5( -log(1-x) + log(1+x)) + c or in the more accepted form 0.5(log(1+x) - log(1-x)) + c. (Where c is a real constant). 

ML
Answered by Mitchell L. Further Mathematics tutor

2318 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Could you explain to me how proof by induction works?


Does the following matrix A = (2 2 // 3 9) (upper row then lower row) have an inverse? If the matrix A^2 is applied as a transformation to a triangle T, by what factor will the area of the triangle change under the transformation?


Show, using the focus-directrix property for an ellipse, that PS +PS'=2a where P is a point on the ellipse and S and S' are the two foci.


Express cos(4x) in terms of powers of cos(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning