A projectile is launched from the ground at a speed of 40ms^-1 at an angle of 30 degrees to the horizontal, where does it land? What is the highest point the projectile reaches?

Since the SUVAT equations of motion act independently in the horizontal and vertical directions we can use the vertical equations to find the total time (the time when total vertical displacement is zero) and then calculate how far the partical has moved horizontally in that time.

Vertical:

s=ut+1/2at^2 ------> 0 = 40sin(30) t -0.59.8t^2----> t=4.08s

Horizontal:

s=ut+0.5at^2 -------> x=40cos(30)*4.08  [no horizontal acceleration] =141.3m

To find the apex of the flight, we use a second SUVAT equation, noting that the instantaneous velocity at the maximum is entirely horizontal.

Vertically:

v^2=u^2+2aS------>0=(40sin(30))^2-29.8H------------->H=400/19.6=20.4m

BL
Answered by Ben L. Physics tutor

3023 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the function of the control rods in the entire fission reactor proccess?


Can you please explain the significance of photoelectric effect?


How can the first order kinematic (SUVAT) equations be derived?


What is the definition of a moment?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences