A block of ice slides down the full height from one side of a 1m high bowl and up the other side. Assuming frictionless motion and taking g as 9.81ms-2, find the speed of the block at the bottom of the bowl and the height it reaches on the the other side.

Using the law of conservation of energy, the potential energy of the block is transferred to kinetic energy as it slides down. KE [0.5mv2] = PE [mgh], v = √2gh v = √29.811 = 4.43 ms-1 The block's KE will be transferred back to PE as it rises so it will slide up to the same height it slid down from - 1m.

OS
Answered by Oluwatosin S. Physics tutor

2275 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How does a thermal nuclear reactor work?


You are in a vacuum chamber, and you drop a feather and a bowling ball (initially at rest) from a great height. Which will hit the ground first?


Initially, trucks A and B are travelling in opposite directions. A has mass 1000 kg and is travelling at speed 7ms^-1. B has mass 4000kg and is travelling at speed 2ms^-1. What is their speed and direction after collision if they move together?


How can an object be accelerating when it's velocity is constant, and how does centripetal acceleration work.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning