A block of ice slides down the full height from one side of a 1m high bowl and up the other side. Assuming frictionless motion and taking g as 9.81ms-2, find the speed of the block at the bottom of the bowl and the height it reaches on the the other side.

Using the law of conservation of energy, the potential energy of the block is transferred to kinetic energy as it slides down. KE [0.5mv2] = PE [mgh], v = √2gh v = √29.811 = 4.43 ms-1 The block's KE will be transferred back to PE as it rises so it will slide up to the same height it slid down from - 1m.

OS
Answered by Oluwatosin S. Physics tutor

2046 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A ball is dropped from rest from a window 3m above ground height. How long will it take the ball to hit the ground? (You may assume air resistance on the ball is negligible.)


Calculate the length of a 120m (as measured by the astronaut) spaceship travelling at 0.85c as measured by a stationary observer


What is Newton's Third Law and what is an example of it?


A ball with radius 10cm is filled with an ideal gas at pressure 2*(10)^5Pa and temperature 300K. The volume of the gas is changed at constant pressure so that the radius of the ball is reduced with 1cm. Find the amount of gas and the new temperature


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences