A block of ice slides down the full height from one side of a 1m high bowl and up the other side. Assuming frictionless motion and taking g as 9.81ms-2, find the speed of the block at the bottom of the bowl and the height it reaches on the the other side.

Using the law of conservation of energy, the potential energy of the block is transferred to kinetic energy as it slides down. KE [0.5mv2] = PE [mgh], v = √2gh v = √29.811 = 4.43 ms-1 The block's KE will be transferred back to PE as it rises so it will slide up to the same height it slid down from - 1m.

OS
Answered by Oluwatosin S. Physics tutor

2302 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Define light, critical and heavy damping in simple harmonic motion.


Derive the Drift Velocity Equation


If photons of wavelength 0.1nm are incident on a 2m x 2m Solar Panel at a rate of 2.51x10^15s^-1, calculate the intensity, I, of the photons on the Solar Panel.


A ball is dropped from rest from a window 3m above ground height. How long will it take the ball to hit the ground? (You may assume air resistance on the ball is negligible.)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning