Using the substitution u = ln(x), find the general solution of the differential equation y = x^2*(d^2(y)/dx^2) + x(dy/dx) + y = 0

dy/dx = (dy/du)(1/x), d^2(y)/dx^2 = (d^2(y)/du^2)(1/(x^2)) - (dy/du)*(1/(x^2))   

(x^2)( (d^2(y)/du^2)(1/(x^2)) - (dy/du)(1/(x^2)) ) + x(dy/du)*(1/x) + y = 0       

d^2(y)/du^2 - dy/du + dy/du + y = 0  

d^2(y)/du^2 + y = 0

y = Asin(u) + Bcos(u)

y = Asin(ln(x)) + Bcos(ln(x))                   

IK
Answered by Isis K. Further Mathematics tutor

3952 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

In simple harmonic motion, where would the object have the largest speed. If the angular velocity is 2 rad s^-1, and the amplitude is 1m, what is the largest speed obtained by the object?


What is De Moivre's theorem?


Using the definitions of hyperbolic functions in terms of exponentials show that sech^2(x) = 1-tanh^2(x)


solve the equation 4cos^2(x) -15sin(x) = 13


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences