A golf ball is hit from horizontal ground with speed 10 m/s at an angle of p degrees above the horizontal. The greatest height the golf ball reached above ground level is 1.22m. Model the golf ball as a particle and ignore air resistance. Find p.

Initial horizontal speed of particle = 10cos(p) m/s. Initial vertical speed of particle = 10sin(p) m/s. ('U' in suvat.) There are no forces other than gravity acting on the particle so the vertical acceleration on the partical while it is moving upwars is -9.8 m/s2. ('A' in suvat.) The greatest height reached by the golf ball is 1.22m. ('S' in suvat.) At this point, the ball has a vertical velocity of 0 m/s ('V' in suvat) as it is not moving upwards or downwards. Using this information, obtained from the question, we find out p using the suvat equation V2 = U2+2AS. 02 = (10sin(p))2 +2(-9.8)(1.22) 100sin2 (p) -23.912=0 sin2(p) =0.23912 sin(p)=0.4889989... p=sin-1(0.488989...). p=29.3.

SR
Answered by Sachin R. Further Mathematics tutor

4483 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

What is the meaning of having a 3 by 3 matrix with determinent 0. Both geometrically and algebriaclly.


Simplify (2x^3+8x^2+17x+18)/(x+2)


Find the stationary points of the function z = 3x(x+y)3 - x3 + 24x


Find the general solution to the differential equation d^2x/dt^2 + 5 dx/dt + 6x = 4 e^-t


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning