A golf ball is hit from horizontal ground with speed 10 m/s at an angle of p degrees above the horizontal. The greatest height the golf ball reached above ground level is 1.22m. Model the golf ball as a particle and ignore air resistance. Find p.

Initial horizontal speed of particle = 10cos(p) m/s. Initial vertical speed of particle = 10sin(p) m/s. ('U' in suvat.) There are no forces other than gravity acting on the particle so the vertical acceleration on the partical while it is moving upwars is -9.8 m/s2. ('A' in suvat.) The greatest height reached by the golf ball is 1.22m. ('S' in suvat.) At this point, the ball has a vertical velocity of 0 m/s ('V' in suvat) as it is not moving upwards or downwards. Using this information, obtained from the question, we find out p using the suvat equation V2 = U2+2AS. 02 = (10sin(p))2 +2(-9.8)(1.22) 100sin2 (p) -23.912=0 sin2(p) =0.23912 sin(p)=0.4889989... p=sin-1(0.488989...). p=29.3.

SR
Answered by Sachin R. Further Mathematics tutor

4837 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Use the geometric series e^(ix) - (1/2)e^(3ix) + (1/4)e^(5ix) - ... to find the exact value sin1 -(1/2)sin3 + (1/4)sin5 - ...


Find the general solution to the differential equation y'' + 4y' + 3y = 6e^(2x) [where y' is dy/dx and y'' is d^2 y/ dx^2]


The curve C has polar equation 'r = 3a(1 + cos(x)). The tangent to C at point A is parallel to the initial line. Find the co-ordinates of A. 0<x<pi


Prove by mathematical induction that, for all non-negative integers n, 11^(2n) + 25^n + 22 is divisible by 24


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning