A golf ball is hit from horizontal ground with speed 10 m/s at an angle of p degrees above the horizontal. The greatest height the golf ball reached above ground level is 1.22m. Model the golf ball as a particle and ignore air resistance. Find p.

Initial horizontal speed of particle = 10cos(p) m/s. Initial vertical speed of particle = 10sin(p) m/s. ('U' in suvat.) There are no forces other than gravity acting on the particle so the vertical acceleration on the partical while it is moving upwars is -9.8 m/s2. ('A' in suvat.) The greatest height reached by the golf ball is 1.22m. ('S' in suvat.) At this point, the ball has a vertical velocity of 0 m/s ('V' in suvat) as it is not moving upwards or downwards. Using this information, obtained from the question, we find out p using the suvat equation V2 = U2+2AS. 02 = (10sin(p))2 +2(-9.8)(1.22) 100sin2 (p) -23.912=0 sin2(p) =0.23912 sin(p)=0.4889989... p=sin-1(0.488989...). p=29.3.

SR
Answered by Sachin R. Further Mathematics tutor

4319 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

You are given a polynomial f, where f(x)=x^4 - 14x^3 + 74 x^2 -184x + 208, you are told that f(5+i)=0. Express f as the product of two quadratic polynomials and state all roots of f.


Integrate tan(x) wrt x


Find the four roots of the equation z^4 = + 8(sqrt(3) + i), in the form z = r*e^(i*theta). Draw the roots on an argand diagram.


I do not understand this topic and particularly this example. In the class the result was found out but I still do not get it. How did the teacher came up with this outcome?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences