Differentiate artanh(x) with respect to x

First we set y=artanh(x). Then we rearrange such that tanh(y)=x. There several approaches to find dy/dx, but the quickest is to use implicit differentiation.

The differential of tanh(y) is sech2y. We differentiate both sides with respect to x using implicit differentiation so that tanh(y)=x becomes sech2(y)(dy/dx)=1. We now rearrange this:

dy/dx=1/sech2y

We use the identity sech2y=1-tanh2y , and since x=tanh(y), we have

dy/dx=1/(1-tanh2y)= 1/(1-x2)

SH
Answered by Sam H. Further Mathematics tutor

10910 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Integrate xsin(x).


Using a Suitable substitution or otherwise, find the differential of y= arctan(sinxcosx), in terms of y and x.


State the conditions by which a Poisson distribution model may be suitable for a given random variable X.


How far is the point (7,4,1) from the line that passes through the points (6,4,1) and (6,3,-1)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences