Differentiate artanh(x) with respect to x

First we set y=artanh(x). Then we rearrange such that tanh(y)=x. There several approaches to find dy/dx, but the quickest is to use implicit differentiation.

The differential of tanh(y) is sech2y. We differentiate both sides with respect to x using implicit differentiation so that tanh(y)=x becomes sech2(y)(dy/dx)=1. We now rearrange this:

dy/dx=1/sech2y

We use the identity sech2y=1-tanh2y , and since x=tanh(y), we have

dy/dx=1/(1-tanh2y)= 1/(1-x2)

SH
Answered by Sam H. Further Mathematics tutor

11173 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Evaluate (1 + i)^12


Integrate cos(log(x)) dx


How do I find the square root of a complex number?


Explain the process of using de Moivre's Theorem to find a trigonometric identity. For example, express tan(3x) in terms of sin(x) and cos(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning