A nail of mass 7.0g is held horizontally and is hit by a hammer of mass 0.25kg moving at 10ms^-1. The hammer remains in contact with the nail during and after the blow. (a) What is the velocity of the hammer and nail after contact?

The principle necessary to answer this question is the conservation of linear momentum. This means that the sum of the momentum of the hammer and nail before impact must be equal to the total momentum of the system after impact. We want to equate momentum before and after impact. Using the fact that momentum is equal to mass times velocity, and putting all quantities into SI units:

0.0070 + 0.2510 = (0.007+0.25)*v

Once we rearrange for v, we get the result that v = 9.7 ms^-1 as the momentum of the hammer and nail after impact.

CS
Answered by Caroline S. Physics tutor

6610 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A crane is attached to one end of a steel girder, and lifts that end into the air. When the cable attached to the end of the girder is at 20 degrees to the vertical, the tension is 6.5kN. Calculate the horizontal and vertical components of this force.


Using the substitution u=cosx + 1, show that the integral of sinx e^cosx+1 is equal to e(e-1), for the values of x between x=π/2 and x=0


What is the force on a moving charged particle in a magnetic field, and why is no work done by this force when it accelerates the particle?


Describe one technique you could use to measure the threshold voltage for LEDs.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning