Prove that (AB)^-1 = B^-1 A^-1

This problem can be solved in 8 steps:

1. Let AB = C

2. A-1AB = A-1C

3. IB = A-1C as the identity matrix I = A-1A

4. B-1B = B-1A-1C premultiply both sides by B-1

5. I = B-1A-1C as B-1B = I, the identity matrix

6. C-1=B-1A-1CC-1 post multiple both sides by C-1

7. C-1=B-1A-1 as CC-1 = I, the identity matrix

8. (AB)-1=B-1A-1

KH
Answered by Katie H. Further Mathematics tutor

121963 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Why is the integral of 1/sqrt(1-x^2)dx = sin^{-1}(x)?


using an integrating factor, find the general solution of the differential equation dy/dx +y(tanx)=tan^3(x)sec(x)


MEI (OCR) M4 June 2006 Q3


Calculate the value of the square root of 3 to four decimal places using the Newton-Raphson process


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning