Find, using integration, the work done in compressing a spring by a distance x.

[integral from 0 to x']dW= [integral from 0 to x'] F(x') dx'

=[integral from 0 to x']kx' dx'

=1/2kx^2
It is a 1-D problem so line integral do not need to be used. At a given instant, let the amount by which the spring is already compressed be x'. The force in the spring is then F = kx', where k is the spring constant. This means if we compress the spring further by an infinitesimal dx, the work done is dW given by dW = kx' dx.
So it is possible to integrate to find the work done from x = 0 to x = x'.

MT
Answered by Matteo T. Physics tutor

3569 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Why does water stay in the bucket if it is swung through a loop fast enough?


(ii) Describe and explain how the horizontal component of the water jet varies from point X to point Y. (2 marks)


A geostationary satellite is orbiting Earth, a) What is meant by a geostationary orbit? b) Calculate the height at which the satellite orbits above the surface of the Earth. The radius of the Earth is 6400km and its mass is 6x10^24 kg.


Why do skydivers have a terminal velocity?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences