Find, using integration, the work done in compressing a spring by a distance x.

[integral from 0 to x']dW= [integral from 0 to x'] F(x') dx'

=[integral from 0 to x']kx' dx'

=1/2kx^2
It is a 1-D problem so line integral do not need to be used. At a given instant, let the amount by which the spring is already compressed be x'. The force in the spring is then F = kx', where k is the spring constant. This means if we compress the spring further by an infinitesimal dx, the work done is dW given by dW = kx' dx.
So it is possible to integrate to find the work done from x = 0 to x = x'.

MT
Answered by Matteo T. Physics tutor

3776 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A block of ice slides down the full height from one side of a 1m high bowl and up the other side. Assuming frictionless motion and taking g as 9.81ms-2, find the speed of the block at the bottom of the bowl and the height it reaches on the the other side.


Explain how a stationary wave is produced when a string fixed at both ends is plucked


A ball is launched from ground level at 5m/s at an angle of 30 degrees above the horizontal. What is its height above ground level at the highest point in its trajectory?


Describe and explain the life cycle of a star?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning