Find, using integration, the work done in compressing a spring by a distance x.

[integral from 0 to x']dW= [integral from 0 to x'] F(x') dx'

=[integral from 0 to x']kx' dx'

=1/2kx^2
It is a 1-D problem so line integral do not need to be used. At a given instant, let the amount by which the spring is already compressed be x'. The force in the spring is then F = kx', where k is the spring constant. This means if we compress the spring further by an infinitesimal dx, the work done is dW given by dW = kx' dx.
So it is possible to integrate to find the work done from x = 0 to x = x'.

MT
Answered by Matteo T. Physics tutor

4229 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A positively charged particle enters a magnetic field oriented perpendicular to its direction of motion. Does the particle: A) Change its velocity, B) Change its speed, C) Accelerate in the direction of the magnetic field.


What is electromotive force (emf) and how can the emf of a battery be measured?


How many fission event occur per second if a Uranium 235 Nuclear Reactor outputs 210MW of energy? Average Binding Energy per Nucleon of Uranium 235- 7.6 MeV Average Binding Energy per Nucleon of Products-8.5 MeV


Calculate the kinetic energy of a proton moving at 95% of the speed of light. (c = 3x10^8 m/s, m_p = 1.67x10^-27 kg) [4 marks]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning