Determine a vector expression for the position of a particle whose velocity is (3t^2 - 8)i + 5j m/s.

r(t) = [integral] v(t) dt

      = (t^3 - 8t + C)i + (5t + C)j m

MT
Answered by Matteo T. Physics tutor

2134 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Describe and explain the motion of a skydiver from leaving the aircraft to reaching terminal velocity


A nucleus of the stable isotope Pb(208,82) has more neutrons than protons. Explain why there is this imbalance between proton and neutron numbers by referring to the forces that operate within the nucleus.


On the line of centres between the Earth and the Moon, there is a point where the net gravitational force is zero. Given that the distance between the two is 385,000 km, and that the Earth has a mass 81x that of the Moon, how far is this point from Earth?


A body of mass 2kg is travelling in a straight line along the x-axis. It collides with a second body of mass 3kg which is moving at -2m/s. The two bodies move off together at 3m/s. What is the initial velocity of the first body?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning