Determine a vector expression for the position of a particle whose velocity is (3t^2 - 8)i + 5j m/s.

r(t) = [integral] v(t) dt

      = (t^3 - 8t + C)i + (5t + C)j m

MT
Answered by Matteo T. Physics tutor

2018 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Show that the orbital period of a satellite is given by T^2=(4pi^2r^3)/(GM) where r is the orbital radius, G is the gravitational constant and M is the mass of the Earth. Then find the orbital radius of a geostationary satellite.


A box is pulled with a rope at 26° to the horizontal and a tension of 120N. What is the work done in pulling it 5 metres?


Given that z = 6 is a root of the cubic equation z^3 − 10z^2 + 37z + p = 0, find the value of p and the other roots.


What is a moment?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning