Find all the cube roots of 1

Let z be a cube root of 1 such that: z^3 = 1 z^3 - 1 = 0 Factorise: (z-1)(z^2 + z + 1) = 0 Then, z=1, the real root, or: z^2 + z + 1 = 0 with z not equal to 1 Use quadratic equation: z = (-1 +- sqrt(1-4))/2 sqrt(1-4)=sqrt(3)i, an imaginary number Tidy up: z = -0.5 +- sqrt(3)i/2

OS
Answered by Oliver S. Further Mathematics tutor

3928 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A tank contains 500L of salty water. Pure water is pumped in at a rate of 10 L/sec, and the the mixture is pumped out at a rate of 15L/ sec. If the concentration of salt is 5g/L initially, form an equation of amount of salt, s, at t seconds.


Find, without using a calculator, integral of 1/sqrt(15+2x-x^2) dx, between 3 and 5, giving your answer as a multiple of pi


How do I find the vector/cross product of two three-dimensional vectors?


Why is the integral of 1/sqrt(1-x^2)dx = sin^{-1}(x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences