Find all the cube roots of 1

Let z be a cube root of 1 such that: z^3 = 1 z^3 - 1 = 0 Factorise: (z-1)(z^2 + z + 1) = 0 Then, z=1, the real root, or: z^2 + z + 1 = 0 with z not equal to 1 Use quadratic equation: z = (-1 +- sqrt(1-4))/2 sqrt(1-4)=sqrt(3)i, an imaginary number Tidy up: z = -0.5 +- sqrt(3)i/2

OS
Answered by Oliver S. Further Mathematics tutor

3665 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Use algebra to find the set of values of x for which mod(3x^2 - 19x + 20) < 2x + 2.


The point D has polar coordinates ( 6, 3π/4). Find the Cartesian coordinates of D.


How do you plot a complex number in an Argand diagram?


Finding modulus and argument of complex number (x+iy)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences