Find all the cube roots of 1

Let z be a cube root of 1 such that: z^3 = 1 z^3 - 1 = 0 Factorise: (z-1)(z^2 + z + 1) = 0 Then, z=1, the real root, or: z^2 + z + 1 = 0 with z not equal to 1 Use quadratic equation: z = (-1 +- sqrt(1-4))/2 sqrt(1-4)=sqrt(3)i, an imaginary number Tidy up: z = -0.5 +- sqrt(3)i/2

OS
Answered by Oliver S. Further Mathematics tutor

4044 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Solve the following inequality: 2x^2 < x+3


Calculate: ( 2+i√(5) )( √(5)-i).


I don't know what I am doing when I solve differential equations using the integrating factor and why does this give us the solutions it does?


Find all of the roots of unity, Zn, in the case that (Zn)^6=1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning