Find all the cube roots of 1

Let z be a cube root of 1 such that: z^3 = 1 z^3 - 1 = 0 Factorise: (z-1)(z^2 + z + 1) = 0 Then, z=1, the real root, or: z^2 + z + 1 = 0 with z not equal to 1 Use quadratic equation: z = (-1 +- sqrt(1-4))/2 sqrt(1-4)=sqrt(3)i, an imaginary number Tidy up: z = -0.5 +- sqrt(3)i/2

OS
Answered by Oliver S. Further Mathematics tutor

3990 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the general solution to the differential equation y'' + 4y' + 3y = 6e^(2x) [where y' is dy/dx and y'' is d^2 y/ dx^2]


A golf ball is hit from horizontal ground with speed 10 m/s at an angle of p degrees above the horizontal. The greatest height the golf ball reached above ground level is 1.22m. Model the golf ball as a particle and ignore air resistance. Find p.


What does it mean if two matrices are said to be commutative?


What are the different forms of complex numbers and how do you convert between them?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning