Find the nth roots of unity.

Let me rephrase this question slightly:
 

"Find all the roots of the equation x^n - 1 = 0."

We know by the fundamental theorem of algebra that an nth degree polynomial has exactly n roots. So the excersice has now been reduced to something as simple as: can you find n different numbers  (call them x) such that  x^n = 1.

Well we know 1 works. Let us call it eoiπ from now on. We still need to find the (n-1) other roots. The key to this is using the fact that 1 = eoiπ, e2, e4, ... So long as our number when raised by n goes to any one of these numbers, we are done. Well, we can see e2iπ/n does the job, and we can also see e4/n does the job, so more generally e2riπ/n does the job for all positive integer r. Now we just need to find n of these numbers that are actually distinct (recall that there are infinitely many different ways of writing a number depending on how you write its argument, so while two numbers may be written differently they will actually be the same).
But fear not! If we look at e2riπ/n for 0 <= r < n, and r an integer, these are all distinct! (If they were not distinct then we could prove that eix = 1 for an x such that 0 < x < 2π, which is false).

ER
Answered by Edison R. Further Mathematics tutor

7964 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

z = 4 /(1+ i) Find, in the form a + i b where a, b belong to R, (a) z, (b) z^2. Given that z is a complex root of the quadratic equation x^2 + px + q = 0, where p and q are real integers, (c) find the value of p and the value of q.


f(x) = 9x^3 – 33x^2 –55x – 25. Given that x = 5 is a solution of the equation f(x) = 0, use an algebraic method to solve f(x) = 0 completely.


Find the four roots of the equation z^4 = + 8(sqrt(3) + i), in the form z = r*e^(i*theta). Draw the roots on an argand diagram.


Find the equation of the tangent to the curve y = exp(x) at the point ( a, exp(a) ). Deduce the equation of the tangent to the curve which passes through the point (0,1) .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning