Find the nth roots of unity.

Let me rephrase this question slightly:
 

"Find all the roots of the equation x^n - 1 = 0."

We know by the fundamental theorem of algebra that an nth degree polynomial has exactly n roots. So the excersice has now been reduced to something as simple as: can you find n different numbers  (call them x) such that  x^n = 1.

Well we know 1 works. Let us call it eoiπ from now on. We still need to find the (n-1) other roots. The key to this is using the fact that 1 = eoiπ, e2, e4, ... So long as our number when raised by n goes to any one of these numbers, we are done. Well, we can see e2iπ/n does the job, and we can also see e4/n does the job, so more generally e2riπ/n does the job for all positive integer r. Now we just need to find n of these numbers that are actually distinct (recall that there are infinitely many different ways of writing a number depending on how you write its argument, so while two numbers may be written differently they will actually be the same).
But fear not! If we look at e2riπ/n for 0 <= r < n, and r an integer, these are all distinct! (If they were not distinct then we could prove that eix = 1 for an x such that 0 < x < 2π, which is false).

Related Further Mathematics A Level answers

All answers ▸

Further Maths: How do you find the inverse of a 2 x 2 matrix?


Given sinhx = 0.5(e^x - e^-x), express its inverse, arcsinhx in terms of x.


Unfortunately this box is to small to contain the question so please see the first paragraph of the answer box for the question.


How do you differentiate arctan(x)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy