how do I do proofs by induction?

The general method is: 1)write down what needs to be shown (the claim) 2)check it holds for the lowest value of n required (normally n=1 but check question) 3)write down sentence: 'Suppose when n=m the claim holds' 4)Starting from/using 3), obtain the corresponding claim for n=m+1 (e.g. using algebraic manipulation, methods of integration etc.) 5)end with: 'So if the claim holds for n=m it then holds for n=m+1. Since it holds for n=1, by induction we are done.' Example Prove by induction that 12+36+108+...+4x3n=6(3n- 1) Solution: step 1) is just the exact question statement. When n=1, the LHS is 4x3=12 and the RHS is 6(3-1)=12=LHS so the claim is true (this is step 2) done). Now suppose that when n=m the claim holds (this is step 3) done). We have 12+36+108+...+4x3m+4x3m+1=(12+36+108+...+4x3m)+4x3m+1=6(3m-1)+4x3m+1  (by our assumption in step 3))                                                                                                  =2x3m+1-6+4x3m+1 (expanding the brackets)                                                                                                  =6x3m+1-6                                                                                                                                =6(3m+1-1)           (this is step 4) done as this is what we want) So if the claim holds for n=m it then holds for n=m+1. Since it holds for n=1, by induction we are done. (step 5) done).

DR
Answered by Daniel R. Further Mathematics tutor

2354 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

The rectangular hyperbola H has parametric equations: x = 4t, y = 4/t where t is not = 0. The points P and Q on this hyperbola have parameters t = 1/4 and t = 2 respectively. The line l passes through the origin O and is perpendicular to the line PQ.


How does proof by induction work?


find the sum of r from 0 to n of : 1/((r+1)(r+2)(r+3))


Given that the equation x^2 - 2x + 2 = 0 has roots A and B, find the values A + B, and A * B.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences