how do I do proofs by induction?

The general method is: 1)write down what needs to be shown (the claim) 2)check it holds for the lowest value of n required (normally n=1 but check question) 3)write down sentence: 'Suppose when n=m the claim holds' 4)Starting from/using 3), obtain the corresponding claim for n=m+1 (e.g. using algebraic manipulation, methods of integration etc.) 5)end with: 'So if the claim holds for n=m it then holds for n=m+1. Since it holds for n=1, by induction we are done.' Example Prove by induction that 12+36+108+...+4x3n=6(3n- 1) Solution: step 1) is just the exact question statement. When n=1, the LHS is 4x3=12 and the RHS is 6(3-1)=12=LHS so the claim is true (this is step 2) done). Now suppose that when n=m the claim holds (this is step 3) done). We have 12+36+108+...+4x3m+4x3m+1=(12+36+108+...+4x3m)+4x3m+1=6(3m-1)+4x3m+1  (by our assumption in step 3))                                                                                                  =2x3m+1-6+4x3m+1 (expanding the brackets)                                                                                                  =6x3m+1-6                                                                                                                                =6(3m+1-1)           (this is step 4) done as this is what we want) So if the claim holds for n=m it then holds for n=m+1. Since it holds for n=1, by induction we are done. (step 5) done).

DR
Answered by Daniel R. Further Mathematics tutor

2489 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

3 points lie in a plane; P1=i+2j+3k, P2=-3i+5j+2k, P3=i+2j+k. Find the Cartesian equation of the plane


MEI (OCR) M4 June 2006 Q3


Unfortunately this box is to small to contain the question so please see the first paragraph of the answer box for the question.


Prove by induction the sum of n consecutive positive integers is of the form n(n+1)/2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning