Prove that 1+4+9+...+n^2 = n(n+1)(2n+1)/6.

Consider the case n=1. Then 1(1+1)(2*1+1)/6 = 1 = 1^2 and so the claim is true for n=1. Suppose the claim is true for some positive integer n, so that 1+4+9+...+n^2 = n(n+1)(2n+1)/6. Then by the inductive hypothesis 1+4+9+...+n^2 + (n+1)^2 = (1+4+9+...+n^2) + (n+1)^2 = n(n+1)(2n+1)/6 + (n+1)^2                                                                                      = (n+1)(2n^2 + n + 6(n+1))/6                                                                                      = (n+1)(n+2)(2n+3)/6 which is the claim for n+1. As the claim is true for n=1, it's true for all n by induction.

JR
Answered by James R. Further Mathematics tutor

20565 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do I draw any graph my looking at its equation?


Express cos5x in terms of increasing powers of cosx


Unfortunately this box is to small to contain the question so please see the first paragraph of the answer box for the question.


Explain why the equation tanx + cotx = 1 does not have real solutions.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning