Prove that 1+4+9+...+n^2 = n(n+1)(2n+1)/6.

Consider the case n=1. Then 1(1+1)(2*1+1)/6 = 1 = 1^2 and so the claim is true for n=1. Suppose the claim is true for some positive integer n, so that 1+4+9+...+n^2 = n(n+1)(2n+1)/6. Then by the inductive hypothesis 1+4+9+...+n^2 + (n+1)^2 = (1+4+9+...+n^2) + (n+1)^2 = n(n+1)(2n+1)/6 + (n+1)^2                                                                                      = (n+1)(2n^2 + n + 6(n+1))/6                                                                                      = (n+1)(n+2)(2n+3)/6 which is the claim for n+1. As the claim is true for n=1, it's true for all n by induction.

JR
Answered by James R. Further Mathematics tutor

19953 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the general solution to the differential equation: d^2y/dx^2 - 8 dy/dx +16y = 2x


how do I do proofs by induction?


Find the complex number z such that 5iz+3z* +16 = 8i. Give your answer in the form a + bi, where a and b are real numbers.


What is the general solution to the equation d2y/dx2 + dy/dx - 2y = -3sinx + cosx (d2y/dx2 signals a second order derivative)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning