Find the number of solutions x in [0,2pi) to the equation 7sin x +2(cos x)^2 =5.

The problem seems to be hard as the equation involved both cosx and sinx But we can relate the two as (cosx)^2 + (sinx)^2 = 1, so we can rearrange this as 0 = 2(sinx)^2 - 7sinx + 3. This quadratic in sinx has solutions sinx = (7+5)/4 = 3 or sinx = (7-5)/4 = 0.5. As |sinx| is at most 1, we have sinx = 0.5, so that x = pi/6 or x = 5pi/6. (We should draw a graph of sinx to make sure we have all the solutions in the stated range.) So the answer is 2.

JR
Answered by James R. MAT tutor

3060 Views

See similar MAT University tutors

Related MAT University answers

All answers ▸

Circle the correct letter: The equation x^3 - 30x^2 + 108x - 104 = 0 has a) No real roots; b) Exactly one real root; c) Three distinct real roots; d) A repeated root.


How would I go about graph sketching?


What graph can y = cos^2(x^2)/ x^2 have, for x > 0 ?


[based on MAT 2018 (G)] The curves y = x^2 + c and y^2 = x touch at a single point. Find c.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning