Find the number of solutions x in [0,2pi) to the equation 7sin x +2(cos x)^2 =5.

The problem seems to be hard as the equation involved both cosx and sinx But we can relate the two as (cosx)^2 + (sinx)^2 = 1, so we can rearrange this as 0 = 2(sinx)^2 - 7sinx + 3. This quadratic in sinx has solutions sinx = (7+5)/4 = 3 or sinx = (7-5)/4 = 0.5. As |sinx| is at most 1, we have sinx = 0.5, so that x = pi/6 or x = 5pi/6. (We should draw a graph of sinx to make sure we have all the solutions in the stated range.) So the answer is 2.

JR
Answered by James R. MAT tutor

3069 Views

See similar MAT University tutors

Related MAT University answers

All answers ▸

The sequence xn is given by the formula x_n = n^3 − 9n^2 + 631. What is the largest value of n for which x_n > x_(n+1)?


(Note this is the kind of exercise I would ask someone who is doing further maths and especially someone MAT/STEP) Sketch the graph of y=sin(1/x)


How many 0's are at the end of 100! (100 factorial)?


[based on MAT 2018 (G)] The curves y = x^2 + c and y^2 = x touch at a single point. Find c.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning