Find the number of solutions x in [0,2pi) to the equation 7sin x +2(cos x)^2 =5.

The problem seems to be hard as the equation involved both cosx and sinx But we can relate the two as (cosx)^2 + (sinx)^2 = 1, so we can rearrange this as 0 = 2(sinx)^2 - 7sinx + 3. This quadratic in sinx has solutions sinx = (7+5)/4 = 3 or sinx = (7-5)/4 = 0.5. As |sinx| is at most 1, we have sinx = 0.5, so that x = pi/6 or x = 5pi/6. (We should draw a graph of sinx to make sure we have all the solutions in the stated range.) So the answer is 2.

JR
Answered by James R. MAT tutor

3063 Views

See similar MAT University tutors

Related MAT University answers

All answers ▸

Let a and b be positive integers such that a+b = 20. What is the maximum value that (a^2)b can take?


How many distinct real roots does the equation x^3 − 30x^2 + 108x − 104 = 0 have?


Can you please help with Question 5 on the 2008 MAT?


The inequality x^4 < 8x^2 + 9 is satisfied precisely when...


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning