Find the number of solutions x in [0,2pi) to the equation 7sin x +2(cos x)^2 =5.

The problem seems to be hard as the equation involved both cosx and sinx But we can relate the two as (cosx)^2 + (sinx)^2 = 1, so we can rearrange this as 0 = 2(sinx)^2 - 7sinx + 3. This quadratic in sinx has solutions sinx = (7+5)/4 = 3 or sinx = (7-5)/4 = 0.5. As |sinx| is at most 1, we have sinx = 0.5, so that x = pi/6 or x = 5pi/6. (We should draw a graph of sinx to make sure we have all the solutions in the stated range.) So the answer is 2.

JR
Answered by James R. MAT tutor

3058 Views

See similar MAT University tutors

Related MAT University answers

All answers ▸

Let a and b be positive real numbers. If x^2 + y^2<=1 then what is the largest that ax+by can get?


The inequality x^4 < 8x^2 + 9 is satisfied precisely when...


Can you please help with Question 5 on the 2008 MAT?


Let f(x) = 2x^3 − kx^2 + 2x − k. For what values of the real number k does the graph y = f(x) have two distinct real stationary points? (MAT 2017 q1.A)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning