Differentiate arctan of x with respect to x.

Say arctan of x is equal to a value y. Now take the tangent of both sides; x now equals tan of y! Easy from here, differentiate both sides wrt x. Now 1 equals sec^2y dy/dx, and you can rearrange to find dy/dx. To simplify, use the trig identity tan^y+1=sec^y, to get 1/1+x^2 is dy/dx.

AM
Answered by Andrew M. Further Mathematics tutor

3185 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Why does e^ix = cos(x) + isin(x)


I do not understand this topic and particularly this example. In the class the result was found out but I still do not get it. How did the teacher came up with this outcome?


Prove that (AB)^-1 = B^-1 A^-1


For f(x) = (3x+4)^(-2), find f'(x) and f''(x) and hence write down the Maclaurin series up to and including the term in x^2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences