It is given that f(x) = 2sinhx+3coshx. Show that the curve y = f(x) has a stationary point at x =-½ ln(5) and find the value of y at this point. Solve the equation f(x) = 5, giving your answers exactly

1.Differentiating: f'(x)= 2cosh(x)+3sinh(x) At a stationary point, we know f'(x)=0. Therefore 2cosh(x)+3sinh(x)=0. (easy to forget that unlike nromal trig there is no change in sign) Rearranging gives tanh(x)=-2/3. This can be easily solved using arctanh(x)=1/2ln(1+x/1-x) 2. Writing in terms of exponentials gives 5e^x-e^-x=10 Multiply by e^x. This can then be recognised as a simple quadratic equation in e^x. (sometimes can be awkward to spot)

SB
Answered by Simon B. Further Mathematics tutor

4254 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the inverse of the general 2x2 matrix A= ([a, b],[c, d]) when does this inverse exist?


How do you prove the formula for the sum of n terms of an arithmetic progression?


Prove by induction that 2^(6n)+3^(2n-2) is divsible by 5. (AS Further pure)


Two planes have eqns r.(3i – 4j + 2k) = 5 and r = λ (2i + j + 5k) + μ(i – j – 2k), where λ and μ are scalar parameters. Find the acute angle between the planes, giving your answer to the nearest degree.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning