It is given that f(x) = 2sinhx+3coshx. Show that the curve y = f(x) has a stationary point at x =-½ ln(5) and find the value of y at this point. Solve the equation f(x) = 5, giving your answers exactly

1.Differentiating: f'(x)= 2cosh(x)+3sinh(x) At a stationary point, we know f'(x)=0. Therefore 2cosh(x)+3sinh(x)=0. (easy to forget that unlike nromal trig there is no change in sign) Rearranging gives tanh(x)=-2/3. This can be easily solved using arctanh(x)=1/2ln(1+x/1-x) 2. Writing in terms of exponentials gives 5e^x-e^-x=10 Multiply by e^x. This can then be recognised as a simple quadratic equation in e^x. (sometimes can be awkward to spot)

SB
Answered by Simon B. Further Mathematics tutor

4383 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

The rectangular hyperbola H has parametric equations: x = 4t, y = 4/t where t is not = 0. The points P and Q on this hyperbola have parameters t = 1/4 and t = 2 respectively. The line l passes through the origin O and is perpendicular to the line PQ.


a) Find the general solution to the differential equation: f(x)=y''-12y'-13y=8. b) Given that when x=0, y=0 and y'=1, find the particular solution to f(x).


Solve the equation 3sinh(2x) = 13 - 3e^(2x), answering in the form 0.5ln(k). where k is an integer


explain the eigenvalue problem


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning