Describe, using a diagram, the forces acting on the system of an object tethered to a string, rotating around a fixed point in free space. Will the string ever become horizontal?

Firstly, I would start by drawing a diagram of the system on the whiteboard, showing the object attached to the string, and the string at a fixed point. I would show using arrows that the object was rotating at a velocity, v, at a radius, r, from the fixed point. Then I would proceed to label the forces. Firstly there is the centripetal force due to the rotation of the object, which points along the direction of the string towards the centre of the system. There is then a reaction force, also known as tension in the string, acting in equal magnitude and in the opposite direction to the centripetal force. Then, if the object is rotating in free space there is gravity acting upon the object, causing it to have a downwards force due to the weight of the object. The string would never be horizontal on Earth due to the weight of the object due to gravity, however if you went into space the string could become horizontal. Here I would draw a diagram of the forces acting upon the system as a triangle, showing how it can never reach horizontal on Earth, no matter the size of the centripetal force.

SS
Answered by Simon S. Physics tutor

4210 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A block of mass (m) is placed on a rough slope inclined at an angle (a) to the horizontal, find an expression in terms of (a) for the smallest coefficient of friction (x), such that the block does not fall down the slope.


How do you combine resistors is series and parallel?


Two immobile point charges Q1 and Q2 of values +q and +3q respectively are some distance apart. Q3, with value +2q is placed between them and does not move. What is the ratio of the distance between Q3 and Q2 to the distance between Q1 and Q3?


A spacecraft needs to be slowed down from a speed of 96m/s to 8.2m/s. This can be done by firing an object as the spacecraft is moving. If the mass of the spacecraft is 6730kg and the object is 50kg, calculate the velocity of the ejected object.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences