Show, using the focus-directrix property for an ellipse, that PS +PS'=2a where P is a point on the ellipse and S and S' are the two foci.

The focus diretrix property for an ellipse is PS/PD=e. Now this is also the case for the other directrix and focus, so PS'/PD'=e. Now we can rearrange these equations to find a formula for PS +PS', PS +PS'=e(PD+PD'). Using a simple diagram we can see PD+PD'= 2ae by marking on some distances. Subbing into the above equation yields PS +PS'=2a. 

DL
Answered by Daniel L. Further Mathematics tutor

9988 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do I do a proof by induction?


Let E be an ellipse with equation (x/3)^2 + (y/4)^2 = 1. Find the equation of the tangent to E at the point P where x = √3 and y > 0, in the form ax + by = c, where a, b and c are rational.


A mass m=1kg, initially at rest and with x=10mm, is connected to a damper with stiffness k=24N/mm and damping constant c=0.2Ns/mm. Given that the differential equation of the system is given by d^2x/dt^2+(dx/dt *c/m)+kx/m=0, find the particular solution.


Find the 4th roots 6


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences