Show that (n^2) + (n+1)^2 + (n+2)^2 = 3n^2 + 6n + 5, Hence show that the sum of 3 consecutive square numbers is always 2 away from a multiple of 3.

Expanding out the Brackets: (n2)+ (n2 + n + n + 1) + (n2 + 2n + 2n +4) = (n2) + (n2+2n+1) + (n2+4n+4) =3n2 + 6n +5 Using this result: Three consecutice numbers: n, n+1, n+2 So three consecutive squares:  n2, (n+1)2, (n+2)2 Sum of those brackets = 3n2 + 6n + 5 (from first part) Simplifying 3n2 + 6n + 5 = 3n2 + 6n + 3   +2 = 3(n2 + 2n +1)  + 2 First part is always a multiple of 3, and the final result is always 2 away from that.

JC
Answered by James C. Further Mathematics tutor

2978 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

y = (x+4)(6x-7). By differentiating, find the x coordinate of the maximum of this equation.


A=(1,a;0,1/2) B=(1,-1;0,2) AB=I, calculate the value of a.


A curve is mapped by the equation y = 3x^3 + ax^2 + bx, where a is a constant. The value of dy/dx at x = 2 is double that of dy/dx at x = 1. A turning point occurs when x = -1. Find the values of a and b.


f(x) = 3x^3 – x^2 – 20x – 12 (a) Use the factor theorem to show that (3x + 2) is a factor of f(x). [2 marks] (b) Factorise f(x) fully. [3 marks]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning