In the Photoelectric effect, Why does increasing the light intensity have no effect on the energy of the electron emitted?

The equation to calculate the energy of an emitted electron is: E = hf - φ, where E is the energy of the electron emitted, is the Planck's constant, f is the frequency of the light and φ is the work function of the metal which is the minimum energy required to emit an electron. Here you can see that nothing is dependant on light intensity because the intensity is essentially the number of photons and does not increase nor decrease the energy of a single photon, therefore has no effect on the energy of an electron emitted. 

If the light has enough energy to emit a photon i.e. has a high enough frequency, then the light intensity will increase the probability of an electron being emitted from the metal.  

PK
Answered by Pankaj K. Physics tutor

21646 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Where does the formula for gravitational potential come from? Why the minus sign?


What is the De Broglie wavelength of an electron given it has a kinetic energy of 1 eV? You are given the mass of an electron is 9.11x10^-31 kg and Planck's constant is 6.63x10^-34


What is natural frequency and how is it associated with resonance?


If two cars are moving, labelled car A and car B. Car A moves at 15 m/s and B at 10 m/s but car B also accelerated at 2 m/s/s. If the two both travel for ten seconds, which car will travel further?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning