In the Photoelectric effect, Why does increasing the light intensity have no effect on the energy of the electron emitted?

The equation to calculate the energy of an emitted electron is: E = hf - φ, where E is the energy of the electron emitted, is the Planck's constant, f is the frequency of the light and φ is the work function of the metal which is the minimum energy required to emit an electron. Here you can see that nothing is dependant on light intensity because the intensity is essentially the number of photons and does not increase nor decrease the energy of a single photon, therefore has no effect on the energy of an electron emitted. 

If the light has enough energy to emit a photon i.e. has a high enough frequency, then the light intensity will increase the probability of an electron being emitted from the metal.  

PK
Answered by Pankaj K. Physics tutor

20983 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the Photoelectric effect?


Is a photon a wave or a particle??


A motorist traveling at 10m/s, was able to bring his car to rest in a distance of 10m. If he had been traveling at 30m/s, in what distance could he bring his cart to rest using the same breaking force?


An electron is moving with speed 2x10^5ms-1 through a magnetic field of strength 0.5T. If the electrons velocity is perpendicular to the direction of the magnetic field, what is the magnitude of the force felt by the electron?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences