Use algebra to find the set of values of x for which mod(3x^2 - 19x + 20) < 2x + 2.

The initial quadratic can be either positive or negative so we must solve for both possibilities.

Solving for positive:

3x^2 - 19x + 20 < 2x + 2    =    3x^2 - 21x + 18 < 0

                                           =    x^2 - 7x + 6 < 0

                                           =    (x - 6)(x - 1) < 0

Therefore, Critical Values where x crosses the x-axis are x = 1 or x = 6. And since we are solving for < 0, we focus on the graph under the x-axis, resulting in 1 < x < 6.

Solving for negative:

-3x^2 + 19x - 20 < 2x + 2    =    3x^2 - 17x + 22 > 0

                                            =    (3x - 11)(x - 2) > 0

Therefore, Critical Values where x crosses the x-axis are x = 2 or x = 11/3. And since we are solving for > 0, we focus on the graph above the x-axis, resulting in x < 2 or x > 11/3.

We must then find the values for x which satisfies both positive and negative, and using a simple numberline we find 1 < x < 2 or 11/3 < x < 6 as our final answers.

JM
Answered by James M. Further Mathematics tutor

10201 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

'Find the first derivative, with respect to x, of arctan(1/x) for non-zero real x. Hence show that the value of arctan(x)+arctan(1/x) is constant for all non-zero x, explicitly stating this constant in your final answer.' How do I solve this?


A particle is undergoing circular motion in a horizontal circle, that lies within the smooth surface of a hemispherical bowl of radius 4r. Find the distance OC (explained in diagram) if the angular acceleration of the particle is equal to root (3g/8r).


You are given a polynomial f, where f(x)=x^4 - 14x^3 + 74 x^2 -184x + 208, you are told that f(5+i)=0. Express f as the product of two quadratic polynomials and state all roots of f.


Find the four complex roots of the equation z^4 = 8(3^0.5+i) in the form z = re^(i*theta)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences