Use algebra to find the set of values of x for which mod(3x^2 - 19x + 20) < 2x + 2.

The initial quadratic can be either positive or negative so we must solve for both possibilities.

Solving for positive:

3x^2 - 19x + 20 < 2x + 2    =    3x^2 - 21x + 18 < 0

                                           =    x^2 - 7x + 6 < 0

                                           =    (x - 6)(x - 1) < 0

Therefore, Critical Values where x crosses the x-axis are x = 1 or x = 6. And since we are solving for < 0, we focus on the graph under the x-axis, resulting in 1 < x < 6.

Solving for negative:

-3x^2 + 19x - 20 < 2x + 2    =    3x^2 - 17x + 22 > 0

                                            =    (3x - 11)(x - 2) > 0

Therefore, Critical Values where x crosses the x-axis are x = 2 or x = 11/3. And since we are solving for > 0, we focus on the graph above the x-axis, resulting in x < 2 or x > 11/3.

We must then find the values for x which satisfies both positive and negative, and using a simple numberline we find 1 < x < 2 or 11/3 < x < 6 as our final answers.

JM
Answered by James M. Further Mathematics tutor

10199 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Let I(n) = integral from 1 to e of (ln(x)^n)/(x^2) dx where n is a natural number. Firstly find I(0). Show that I(n) = -(1/e) + n*I(n-1). Using this formula find I(1).


Further Maths: How do you find the inverse of a 2 x 2 matrix?


FP3- Find the eigenvalues and the eigenvector for the negative eigenvalue, from this 2x2 matrix of columns (2,1) and (3,0)


Find the square roots of 2 + isqrt(5)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences