Use algebra to find the set of values of x for which mod(3x^2 - 19x + 20) < 2x + 2.

The initial quadratic can be either positive or negative so we must solve for both possibilities.

Solving for positive:

3x^2 - 19x + 20 < 2x + 2    =    3x^2 - 21x + 18 < 0

                                           =    x^2 - 7x + 6 < 0

                                           =    (x - 6)(x - 1) < 0

Therefore, Critical Values where x crosses the x-axis are x = 1 or x = 6. And since we are solving for < 0, we focus on the graph under the x-axis, resulting in 1 < x < 6.

Solving for negative:

-3x^2 + 19x - 20 < 2x + 2    =    3x^2 - 17x + 22 > 0

                                            =    (3x - 11)(x - 2) > 0

Therefore, Critical Values where x crosses the x-axis are x = 2 or x = 11/3. And since we are solving for > 0, we focus on the graph above the x-axis, resulting in x < 2 or x > 11/3.

We must then find the values for x which satisfies both positive and negative, and using a simple numberline we find 1 < x < 2 or 11/3 < x < 6 as our final answers.

JM
Answered by James M. Further Mathematics tutor

11239 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Differentiate arctan(x) with respect to x


A mass m=1kg, initially at rest and with x=10mm, is connected to a damper with stiffness k=24N/mm and damping constant c=0.2Ns/mm. Given that the differential equation of the system is given by d^2x/dt^2+(dx/dt *c/m)+kx/m=0, find the particular solution.


Solve x^3=1 giving all the roots between -pi<=theta<=pi in exponential form


Find the solution the the differential equation d^2y/dx^2 + (3/2)dy/dx + y = 22e^(-4x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning