Explain the change of quark character associated with the beta-plus decay and deduce the equation.

First, we can deduce the equation for beta-plus decay in terms of the nucleons. We know a positron, ß+ (antilepton), is produced, so to conserve lepton number an electron neutrino, ve (lepton), must also be produced. As we know this is a nuclear reaction (occurring in the nucleus) it must involve either proton or neutron decay. We can then work out that, to conserve charge, it must be a proton decaying into a neutron as the positron on the right-hand side is positively charged:

p → n + ß+ +ve

Now we consider the quark composition of the proton and neutron. As baryons both must contain 3 quarks. As the up quark has charge +2/3 and the down has charge -1/3 we can use our knowledge of the charge of the proton and neutron to figure out their compositions; uud and udd respectively. Finally, we can see the actual change occurring is an up quark decaying into a down quark:

u → d + ß+ +ve

TF
Answered by Thomas F. Physics tutor

6197 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A) Draw field lines around a positive point particle. B) How does a faraday cage prevent the people within it recieving a electric shock ?


What path would a charge moving in the x-y plane track, in the presence of a uniform magnetic field out of the page?


A passenger is standing in a train. The train accelerates and the passenger falls backwards. Use Newton's first law of motion to explain why he fell backwards.


With the help of a suitably labelled graph, explain what is meant by resonance of a mechanical system.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning