Explain how and why the diffraction pattern of electrons passing through a slit depends on their momentum.

To understand this question, we have to consider the wave-particle duality of electrons. When passing through a slit, electrons exhibit a wavelike property- they diffract or spread out like a wave passing through a narrow gap. The De Broglie wavelength tells us about the wave-particle relationship:

λ = h/mv

where λ is the wavelength, h is planks constant, m is the mass and v is velocity. As momentum p = mv, a smaller momentum will result in a longer wavelength. The diffraction or spread of a wave passing through a slit depends on the wavelength- the longer the wavelength, the more the light spreads out. Finally, we can consider (through a diagram) that more spread out waves will have a more dispersed diffraction pattern. Therefore, electrons with smaller momentum will produce a more diffuse diffraction pattern.

TF
Answered by Thomas F. Physics tutor

14038 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A car of mass 1500kg is travelling at 10 ms-1 along a horizontal road. A brake force of 3000N brings it to rest. Calculate the deceleration of the car and the distance travelled by the car whilst decelerating.


A railway car of mass m1 travelling at a velocity of v1 collides with a second car of mass m2 travelling at v2 and the two join together. What is their final velocity?


Which are the types of carrier movements and how are they activated


Describe the workings behind the Photoelectric effect


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning