How would go about finding the set of values of x for which x+4 > 4 / (x+1)?

Whenever you see a problem involving an inequality (greater than or less than sign) it is really important to pause for a second before you go breaking any rules of mathematics. Inequalities do not always behave the same way as equalities (equals sign), especially when negative numbers are involved. Take this simple inequality: 1 < 2. We know that this is true but if we multiply both sides by a negative number such as -1 we get the new statement -1 < -2 which isn't true at all. Since (x+1) could be negative (if x is less than -1) we can't multiply both sides by it however we can multiply both sides by (x+1)^2 since that will always be greater than or equal to zero. We do just that:

x+4 > 4 / (x+1) (x+4)(x+1)^2 > 4(x+1) [Since one of the (x-1)'s on the numerator of right-hand side cancels with the one on the denominator]

(x+4)(x^2 + 2x + 1) > 4x + 4 [We start expanding out the brackets...]

x(x^2 + 2x + 1) + 4(x^2 + 2x + 1) > 4x + 4

x^3 + 2x^2 + x + 4x^2 + 8x + 4 > 4x + 4

x^3 + 6x^2 + 5x > 0 [...and collect all terms on one side of the inequality]

It is really tempting to divide by x at this point since every term a multiple of x but beware. x could be zero and division by zero is never allowed so instead we solve the inequality by factorising it:

x(x^2 + 6x + 5) > 0

x(x+1)(x+5) > 0

We can now sketch a graph of x(x+1)(x+5) by using the fact that it evaluates to zero for x = 0, -1 and -5 and using the typical shape of a cubic equation where the coefficient of x^3 is positive (it's 1 in this case). We then shade in the regions that are greater than zero (above the x-axis) and turn these into the range of values of x that satisfy the inequality:

-5 < x < -1 or x > 0

TH
Answered by Tim H. Further Mathematics tutor

2231 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A line has Cartesian equations x−p = (y+2)/q = 3−z and a plane has equation r ∙ [1,−1,−2] = −3. In the case where the angle θ between the line and the plane satisfies sin⁡θ=1/√6 and the line intersects the plane at z = 0. Find p and q.


Show that the matrix A is non-singular for all real values of a


Given that x = i is a solution of 2x^3 + 3x^2 = -2x + -3, find all the possible solutions


The point D has polar coordinates ( 6, 3π/4). Find the Cartesian coordinates of D.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences