A stationary particle explodes into 3: A (to the left), B and C (both to the right). B has mass m and speed 3v. C has mass 2m and speed v. A has speed 2v. What is the mass of A in terms of m?

The key to solving this is remembering that momentum is conserved. The large, initial particle has no speed so its momentum is zero. Therefore, if we add together the momenta of the final particles we also get zero. So we can write:

pA + p+ p= 0

And we can rearrange for pA, which is what we want to find:

pA = -pB - pC

We know that momentum is calculated p = mv and we are given the masses and velocities of B and C, and the velocity of A (we remember that A is travelling in the opposite direction so has a negative v):

M* (-2v) = -3mv - 2mv

We rearrange for the mass of A, MA, and find that:

MA = 2.5 m

SP
Answered by Seth P. Physics tutor

2228 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Uranium -238 has a half life of 4.5 billion years. How long will it take a 2g sample of U-238 to contain just 0.4g of U-238?


Can you explain the photoelectric effect?


How do I derive Kepler's 3rd law using Newton's Law of gravitation, in the case of a circular orbit?


Two people sit opposite each other on the edge of a rotating disk of radius, R, and negligible mass. One person has a mass of 40kg, the other of 50kg. The disk is rotating at 30 revs/min. What is the rotational kinetic energy if R=1.5m?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning