Find the general solution of the differential equation d^2y/dx^2 - 5*dy/dx + 4y = 2x

Solve complimentary function: Let y = emx then,
d2y/dx2 - 5dy/dx + 4y = 0
m2emx - 5memx + 4emx = 0 (substituting for y)
emx(m2 - 5m + 4) = 0
emx(m - 4)(m - 1) = 0
Therefore m=4 and m=1, so the c.f. is y = Ae4x + Bex where A,B are constants

Solve particular integral: Let y = ax + b and substitute into the differential equation
0 - 5a + 4(ax + b) = 2x
4ax + (4b - 5a) = 2x
Therefore 4a=2 and 4b-5a=0 so a=1/2, b =5/8

Hence the general solution is y = c.f + p.i =  Ae4x + Bex + 1/2 x + 5/8

PM
Answered by Peter M. Further Mathematics tutor

12889 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the equation of the tangent to the curve y = exp(x) at the point ( a, exp(a) ). Deduce the equation of the tangent to the curve which passes through the point (0,1) .


Find values of x which satisfy the inequality: x^2-4x-2<10


Particles P and Q move in a plane with constant velocities. At time t = 0 the position vectors of P and Q, relative to a fixed point O in the plane, are (16i - 12j) m and -5i + 4j) m respectively. The velocity of P is (i + 2j) m/s and the velocity of Q


f(x) = 9x^3 – 33x^2 –55x – 25. Given that x = 5 is a solution of the equation f(x) = 0, use an algebraic method to solve f(x) = 0 completely.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning