Find the general solution of the differential equation d^2y/dx^2 - 5*dy/dx + 4y = 2x

Solve complimentary function: Let y = emx then,
d2y/dx2 - 5dy/dx + 4y = 0
m2emx - 5memx + 4emx = 0 (substituting for y)
emx(m2 - 5m + 4) = 0
emx(m - 4)(m - 1) = 0
Therefore m=4 and m=1, so the c.f. is y = Ae4x + Bex where A,B are constants

Solve particular integral: Let y = ax + b and substitute into the differential equation
0 - 5a + 4(ax + b) = 2x
4ax + (4b - 5a) = 2x
Therefore 4a=2 and 4b-5a=0 so a=1/2, b =5/8

Hence the general solution is y = c.f + p.i =  Ae4x + Bex + 1/2 x + 5/8

PM
Answered by Peter M. Further Mathematics tutor

12944 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A curve has equation y=(2-x)(1+x)+3, A line passes through the point (2,3) and the curve at a point with x coordinate 2+h. Find the gradient of the line. Then use that answer to find the gradient of the curve at (2,3), stating the value of the gradient


The ODE mx'' + cx' + kx = 0 is used to model a damped mass-spring system, where m is the mass, c is the damping constant and k is the spring constant. Describe and explain the behaviour of the system for the cases: (a) c^2>4mk; (b) c^2=4mk; (c) c^2<4mk.


Prove by mathematical induction that 2^(2n-1) + 3^(2n-1) is divisible by 5 for all natural numbers n.


Find the general solution to the differential equation: d^2y/dx^2 - 8 dy/dx +16y = 2x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning