By using an integrating factor, solve the differential equation dy/dx + 4y/x = 6x^-3 (6 marks)

Answer : y = 3/x+ c/x Integrating factor is 4/x (1 mark) => I = eintegral (4/x) dx (1 mark) => I = x(1 mark). Using the formula, d/dx (xy) = 6x (1 mark)=> x4y = integral(6x)dx (1 mark for integrating). Rearranging gets to answer of y=3/x+ c/x4. Where c is an arbitary constant (1 mark)

MD
Answered by Mark D. Further Mathematics tutor

6661 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A curve has the equation (5-4x)/(1+x)


Prove by induction that n! > n^2 for all n greater than or equal to 4.


The complex number -2sqrt(2) + 2sqrt(6)I can be expressed in the form r*exp(iTheta), where r>0 and -pi < theta <= pi. By using the form r*exp(iTheta) solve the equation z^5 = -2sqrt(2) + 2sqrt(6)i.


Evaluate the following product of two complex numbers: (3+4i)*(2-5i)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning