How do I construct a proof by induction?

There are typically 4 steps: proving the base case, making an assumption, making the inductive step and finally concluding the proof.

The base case consists of proving that a statement is true for n = 1, the assumption to make is that the statement holds true for n = k, the trickiest part is the inductive step which is proving that the statement is true for n = k + 1 as long as it is true for n = k, and finally the simplest part is wrapping up the proof with a concise statement.

An example of a statement to prove is that n^3 + 2n is always divisible by 3 which I can go through using the whiteboard if needed.

AF
Answered by Alex F. Further Mathematics tutor

3003 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A tank contains 500L of salty water. Pure water is pumped in at a rate of 10 L/sec, and the the mixture is pumped out at a rate of 15L/ sec. If the concentration of salt is 5g/L initially, form an equation of amount of salt, s, at t seconds.


Explain the process of using de Moivre's Theorem to find a trigonometric identity. For example, express tan(3x) in terms of sin(x) and cos(x).


How do you calculate the derivative of cos inverse x?


Show that the points on an Argand diagram that represent the roots of ((z+1)/z)^6 = 1 lie on a straight line.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences