How do I construct a proof by induction?

There are typically 4 steps: proving the base case, making an assumption, making the inductive step and finally concluding the proof.

The base case consists of proving that a statement is true for n = 1, the assumption to make is that the statement holds true for n = k, the trickiest part is the inductive step which is proving that the statement is true for n = k + 1 as long as it is true for n = k, and finally the simplest part is wrapping up the proof with a concise statement.

An example of a statement to prove is that n^3 + 2n is always divisible by 3 which I can go through using the whiteboard if needed.

AF
Answered by Alex F. Further Mathematics tutor

2964 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find all the cube roots of 1


Given that x = i is a solution of 2x^3 + 3x^2 = -2x + -3, find all the possible solutions


Using your knowledge of complex numbers, such as De Moivre's and Euler's formulae, verify the trigonometric identities for the double angle.


Integrate cos(4x)sin(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences