How do I construct a proof by induction?

There are typically 4 steps: proving the base case, making an assumption, making the inductive step and finally concluding the proof.

The base case consists of proving that a statement is true for n = 1, the assumption to make is that the statement holds true for n = k, the trickiest part is the inductive step which is proving that the statement is true for n = k + 1 as long as it is true for n = k, and finally the simplest part is wrapping up the proof with a concise statement.

An example of a statement to prove is that n^3 + 2n is always divisible by 3 which I can go through using the whiteboard if needed.

AF
Answered by Alex F. Further Mathematics tutor

3383 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do you deal with 3 simultaneous equations? (Struggling with Q7 of AQA specimen paper 1)


Find the four complex roots of the equation z^4 = 8(3^0.5+i) in the form z = re^(i*theta)


The roots of the equation z^3 + 2z^2 +3z - 4 = 0, are a, b and c . Show that a^2 + b^2 +c^2 = -2


Find all of the roots of unity, Zn, in the case that (Zn)^6=1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning