How do I construct a proof by induction?

There are typically 4 steps: proving the base case, making an assumption, making the inductive step and finally concluding the proof.

The base case consists of proving that a statement is true for n = 1, the assumption to make is that the statement holds true for n = k, the trickiest part is the inductive step which is proving that the statement is true for n = k + 1 as long as it is true for n = k, and finally the simplest part is wrapping up the proof with a concise statement.

An example of a statement to prove is that n^3 + 2n is always divisible by 3 which I can go through using the whiteboard if needed.

AF
Answered by Alex F. Further Mathematics tutor

3309 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the determinant of a 3x3 matrix.


prove by induction that, f(n) = 2^(3n+1) + 3(5^(2n+1)) is divisible by 17 for all n>0.


How to multiply and divide by complex numbers


Find the Cartesian equation of a plane containing the points A(1, 7, -2) B(4, -3, 2) and C(7, 8, 9).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning